MATHCOUNTS ${ }^{\circ}$) 1 [inn ${ }^{\circ}$ September 2016 Activity Solutions

Warm-Up!

1. We are told that $x=y+3$ and $y=z-5$, which can be rewritten as $y+5=z$. We are asked to determine the value of $z-x$. Substituting we get $(y+5)-(y+3)=y+5-y-3=5-3=2$.
2. There are 3 cups of lemon juice and 7 cups of water or $3+7=10$ cups of liquid in the container. We want to add pure water so there is 25% lemon juice in the container. We know 25% is equivalent to $1 / 4$. We can set up the equation $3 /(10+w)=1 / 4$. Cross multiplying we get $12=10+w$. So $w=12-10=2$ cups.
3. Juan takes a number: n, adds 2 to it: $n+2$, multiplies the answer by 2 : $(n+2) \times 2=2 n+4$, subtracts 2 from the result: $2 n+4-2=2 n+2$ and divides that by 2 : $(2 n+2) \div 2=n+1$. His answer is 7 so the original number must be $n=7-1=6$.
4. We are told the television costs $\$ 299$ and the older sibling will pay $\$ 45$ more than the younger sibling. This means that the other $299-45=254$ dollars will be split evenly between the two siblings. Therefore, the younger sibling will pay $254 \div 2=127$ dollars.

Follow-up Problems

5. Let the number of questions on the examination by q. If the student scores a 50%, that means $1 / 2 \times q$ questions were answered correctly. We know he answered 15 of the first 20 correct and $1 / 3$ of the remaining or $1 / 3 \times(q-20)$. So we have $15+1 / 3 \times(q-20)=1 / 2 \times q$. Multiplying both sides of the equation by 6 , we get $90+2(q-20)=3 q$. Solving for q, we get $90+2 q-40=3 q$ and therefore $q=50$ questions.
6. We are told that Douglas' favorite number is a positive two-digit integer; let's call it n. Then a new number is created by adding a 7 digit to the end,this is the same as multiplying the number by 10 and adding 7 or $10 n+7$. We are told that the new number is 385 more than Douglas' favorite number. So we have $10 n+7=n+385$. Subtracting n and 7 from both sides yields $9 n=378$. Dividing both sides by 9 gives us $n=42$.
7. Let's call Mary's age now m and her sister's age now s. Mary is seven years older than her sister so we can write the equation $m=s+7$ or $s=m-7$. In three years, Mary will be twice as old as her sister will be, so $m+3=2(s+3)$. Substituting $s=m-7$ into the second equation, we get $m+3=$ $2(m-7+3)$. Solving for m, we get $m+3=2 m-8$ and $m=11$ years old.
8. Let M and J represent the initial amounts Mary and Joe have, respectively. The amount of money Mary has originally is $\$ 2$ more than Joe so $M=J+2$. Joe pays $\$ 1$ less than $2 / 5$ of the money he has for the T-shirt, and Mary pays $1 / 3$ of the money she has. We know that they pay the same amount, so $2 / 5 \times \mathrm{J}-1=1 / 3 \times M$. If we multiply both sides of the second equation by 15 , we get $6 \mathrm{~J}-15=$ $5 M$. If we multiply both sides of the first equation by 5 , we get $5 M=5 J+10$. Subtracting the first equation from the second, we get $J-25=0$ and $J=\$ 25$. We know M is $25+2=\$ 27$. So, altogether, they originally had $25+27=\$ 52$.
